Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biostatistics ; 2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-1744154

ABSTRACT

Vaccine trials are generally designed to assess efficacy on clinical disease. The vaccine effect on infection, while important both as a proxy for transmission and to describe a vaccine's entire effects, requires frequent (e.g., twice a week) longitudinal sampling to capture all infections. Such sampling may not always be feasible. A logistically easy approach is to collect a sample to test for infection at a regularly scheduled visit. Such point or cross-sectional sampling does not permit estimation of classic vaccine efficacy on infection, as long duration infections are sampled with higher probability. Building on work by Rinta-Kokko and others (2009) and Lipsitch and Kahn (2021), we evaluate proxies of the vaccine effect on transmission at a point in time; the vaccine efficacy on prevalent infection and on prevalent viral load, VE$_{\rm PI}$ and VE$_{\rm PVL}$, respectively. Longer infections with higher viral loads should have more transmission potential and prevalent vaccine efficacy naturally captures this aspect. We demonstrate how these parameters obtain from an underlying proportional hazards model for infection and allow for waning efficacy on infection, duration, and viral load. We estimate these parameters based on regression models with either repeated cross-sectional sampling or frequent longitudinal sampling. We evaluate the methods by simulation and analyze a phase III vaccine trial with polymerase chain reaction (PCR) cross-sectional sampling for subclinical infection.

2.
Health Inf Sci Syst ; 8(1): 28, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-805373

ABSTRACT

The novel coronavirus (COVID-19) is continuing its spread across the world, claiming more than 160,000 lives and sickening more than 2,400,000 people as of April 21, 2020. Early research has reported a basic reproduction number (R0) between 2.2 to 3.6, implying that the majority of the population is at risk of infection if no intervention measures were undertaken. The true size of the COVID-19 epidemic remains unknown, as a significant proportion of infected individuals only exhibit mild symptoms or are even asymptomatic. A timely assessment of the evolving epidemic size is crucial for resource allocation and triage decisions. In this article, we modify the back-calculation algorithm to obtain a lower bound estimate of the number of COVID-19 infected persons in China in and outside the Hubei province. We estimate the infection density among infected and show that the drastic control measures enforced throughout China following the lockdown of Wuhan City effectively slowed down the spread of the disease in two weeks. We also investigate the COVID-19 epidemic size in South Korea and find a similar effect of its "test, trace, isolate, and treat" strategy. Our findings are expected to provide guidelines and enlightenment for surveillance and control activities of COVID-19 in other countries around the world.

SELECTION OF CITATIONS
SEARCH DETAIL